DNA transposons and the evolution of eukaryotic genomes.
نویسندگان
چکیده
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
منابع مشابه
Spy: A New Group of Eukaryotic DNA Transposons without Target Site Duplications
Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described...
متن کاملMerlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences.
Several new families of DNA transposons were identified by computer-assisted searches in a wide range of animal species that includes nematodes, flat worms, mosquitoes, sea squirt, zebrafish, and humans. Many of these elements have coding capacity for transposases, which are related to each other and to those encoded by the IS1016 group of bacterial insertion sequences. Although these transposa...
متن کاملSymbiotic DNA in eukaryotic genomes.
The recent explosive growth of molecular genetic databases has yielded increasingly detailed insights into the evolutionary dynamics of eukaryotic genomes. DNA sequences with the self-encoded ability to transpose and replicate are unexpectedly abundant and widespread in eukaryotic genomes. They seem to be sexual parasites. By dispersing themselves among the chromosomes, they increase their tran...
متن کاملBats with hATs: evidence for recent DNA transposon activity in genus Myotis.
Transposable elements make up a significant fraction of many eukaryotic genomes. Although both classes of transposable elements, the DNA transposons and the retrotransposons, show substantial expansion in plants and invertebrates, the DNA transposons are thought to have become inactive in mammalian genomes long ago. Here, we report the first evidence for recent activity of DNA transposons in a ...
متن کاملGenomic landscape of human, bat, and ex vivo DNA transposon integrations.
The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of genetics
دوره 41 شماره
صفحات -
تاریخ انتشار 2007